Automation bias is the tendency to be less vigilant when a process is automated. But can we effectively check ourselves against AI before making a wrong decision?
This isn’t just about GPT, of note in the article, one example:
The AI assistant conducted a Breast Imaging Reporting and Data System (BI-RADS) assessment on each scan. Researchers knew beforehand which mammograms had cancer but set up the AI to provide an incorrect answer for a subset of the scans. When the AI provided an incorrect result, researchers found inexperienced and moderately experienced radiologists dropped their cancer-detecting accuracy from around 80% to about 22%. Very experienced radiologists’ accuracy dropped from nearly 80% to 45%.
In this case, researchers manually spoiled the results of a non-generative AI designed to highlight areas of interest. Being presented with incorrect information reduced the accuracy of the radiologist. This kind of bias/issue is important to highlight and is of critical importance when we talk about when and how to ethically introduce any form of computerized assistance in healthcare.
This isn’t just about GPT, of note in the article, one example:
In this case, researchers manually spoiled the results of a non-generative AI designed to highlight areas of interest. Being presented with incorrect information reduced the accuracy of the radiologist. This kind of bias/issue is important to highlight and is of critical importance when we talk about when and how to ethically introduce any form of computerized assistance in healthcare.