I know this is a joke but please do not buy repeaters they do not work how you would expect them to work.
Repeaters take an already weak signal and amplify that signal while increasing the latency. Sure this makes the signal go farther but it doesn’t increase the bandwidth and if you stand in between the originating wifi source and the repeater your device may not migrate to the source wifi even though it might be faster because the reapeter has the illusion of being a better signal because it’s louder.
The better route to go is to use multiple wifi APs through out the building connected back to your router with ethernet.
You could also go with mesh access points but you have to do a lot of research and planning; The two key things to look out for is they mesh system must have a dedicated backhaul and you must place them where each node has an excellent signal to the next node. Since most backhauls run on 5Ghz and 6Ghz this means there shouldn’t be any walls between them.
Exactly. I’m going to be running Ethernet through my house soon, and even if we stay full Wi-Fi, we’ll benefit by having physical cables connecting the APs. I already have a separate AP, just need to run the cables to get a second in our basement where the signal is weak.
Why would you drop fiber when you can do 10gbps on ethernet at the distances most cabling would be in a home. Never would consider to run fiber and I just finished a couple of new cat7 drops in my home.
We have the luxury of having 1, 2.5, 10 and 25 gigabit fiber to the home but I haven’t considered even 2.5 until the services I use can leverage it
Is fiber really worth the extra complexity and expense? It’s strength is in longer distances with mostly straight runs. When you are doing short distances with multiple turns, copper is much easier and more forgiving. Splicing fiber is difficult if something breaks during or after installation, on top of the expense and skill needed for proper termination. Tools and hardware for copper are cheap, easy to use, and ubiquitous.
I’m still not sure I see the need for it with copper twisted pair now being able to do over 10Gbps reliably. However I can’t fault you for future proofing. I always say pull the best copper you can, and extra of it since it’s easier to do all at once than again later.
They don’t drop it in your home most likely. In our home it’s a box on the side of the house with the modem and they ran cat5 to our media panel in the garage.
Ours will support >1gbit (up to 10gbit allegedly), so they probably won’t run cat5, but hopefully they don’t get lazy and just run cat6 or cat6a and actually run a fiber link to the house.
Then you can buy a bunch of repeaters and the economy is saved
I know this is a joke but please do not buy repeaters they do not work how you would expect them to work.
Repeaters take an already weak signal and amplify that signal while increasing the latency. Sure this makes the signal go farther but it doesn’t increase the bandwidth and if you stand in between the originating wifi source and the repeater your device may not migrate to the source wifi even though it might be faster because the reapeter has the illusion of being a better signal because it’s louder.
The better route to go is to use multiple wifi APs through out the building connected back to your router with ethernet.
You could also go with mesh access points but you have to do a lot of research and planning; The two key things to look out for is they mesh system must have a dedicated backhaul and you must place them where each node has an excellent signal to the next node. Since most backhauls run on 5Ghz and 6Ghz this means there shouldn’t be any walls between them.
Exactly. I’m going to be running Ethernet through my house soon, and even if we stay full Wi-Fi, we’ll benefit by having physical cables connecting the APs. I already have a separate AP, just need to run the cables to get a second in our basement where the signal is weak.
Do yourself a favor and drop fiber at the same time. That’s my plan for whenever I get around to crawling in the attic.
Why would you drop fiber when you can do 10gbps on ethernet at the distances most cabling would be in a home. Never would consider to run fiber and I just finished a couple of new cat7 drops in my home.
We have the luxury of having 1, 2.5, 10 and 25 gigabit fiber to the home but I haven’t considered even 2.5 until the services I use can leverage it
Future proofing. Fiber is cheap, so why not?
Is fiber really worth the extra complexity and expense? It’s strength is in longer distances with mostly straight runs. When you are doing short distances with multiple turns, copper is much easier and more forgiving. Splicing fiber is difficult if something breaks during or after installation, on top of the expense and skill needed for proper termination. Tools and hardware for copper are cheap, easy to use, and ubiquitous.
It really isn’t any more complex, and the price of it has dropped significantly. Plus, you don’t have to terminate the fiber, just pull it.
I’m still not sure I see the need for it with copper twisted pair now being able to do over 10Gbps reliably. However I can’t fault you for future proofing. I always say pull the best copper you can, and extra of it since it’s easier to do all at once than again later.
I agree and really you can replace the copper with fiber by tying an end and pulling.
My city is rolling out fiber in a year or two, so I’ll have to ask them how that works, because I’d like to plan out where they drop it.
They don’t drop it in your home most likely. In our home it’s a box on the side of the house with the modem and they ran cat5 to our media panel in the garage.
Ours will support >1gbit (up to 10gbit allegedly), so they probably won’t run cat5, but hopefully they don’t get lazy and just run cat6 or cat6a and actually run a fiber link to the house.
All the ONT boxes I’ve seen in houses have fiber directly to the box.